论文标题
关于诺维科夫代数的激进分子
On radicals of Novikov algebras
论文作者
论文摘要
我们表明,在主要的非社交诺维科夫代数中,每个非零的理想都是非缔合性的。我们证明了Baer(和Andrunakievich)的激进和左式 - Quasiregular自由基在有限的尺寸Novikov代数中,在特征0或代数封闭的奇数特征领域。我们在有限维科夫代数中表现出右准根源部不存在。
We show that in a prime nonassociative Novikov algebra every nonzero ideal is non-associative. We prove that Baer (and Andrunakievich) radical and left quasiregular radical coincide in finite dimensional Novikov algebras over a field of characteristic 0 or algebraically closed field of odd characteristic. We show non-existence of right quasiregular radical in finite dimensional Novikov algebras.