论文标题

IRS AID和无线驱动的无线网络中信息年龄最小化的层次深度强化学习

Hierarchical Deep Reinforcement Learning for Age-of-Information Minimization in IRS-aided and Wireless-powered Wireless Networks

论文作者

Gong, Shimin, Cui, Leiyang, Gu, Bo, Lyu, Bin, Hoang, Dinh Thai, Niyato, Dusit

论文摘要

在本文中,我们专注于由多个Antenna访问点(AP)协调的无线传感器网络。每个节点都可以通过AP的信号光束形成收获的能量来生成感应信息,并将最新信息报告给AP。我们的目标是通过共同调整节点的传输计划和共同的传输控制策略来最大程度地减少信息年龄的信息(AOI)。为了减少传输延迟,使用智能反射表面(IRS)来通过控制AP的波束成形向量和IRS的相移矩阵来增强通道条件。考虑到不同传感节点处的动态数据到达时,我们提出了一个分层深度强化学习(DRL)框架,以分两个步骤最小化AOI。用户的传输计划首先由外环DRL方法确定,例如DQN或PPO算法,然后使用内环优化来调整上行链路信息传输或下行链路能量传输到所有节点。还提出了一个简单有效的近似值,以减少内环朗姆酒的开销。数值结果验证了分层学习框架在不同节点之间的平均AOI和比例公平方面优于典型的基线。

In this paper, we focus on a wireless-powered sensor network coordinated by a multi-antenna access point (AP). Each node can generate sensing information and report the latest information to the AP using the energy harvested from the AP's signal beamforming. We aim to minimize the average age-of-information (AoI) by adapting the nodes' transmission scheduling and the transmission control strategies jointly. To reduce the transmission delay, an intelligent reflecting surface (IRS) is used to enhance the channel conditions by controlling the AP's beamforming vector and the IRS's phase shifting matrix. Considering dynamic data arrivals at different sensing nodes, we propose a hierarchical deep reinforcement learning (DRL) framework to for AoI minimization in two steps. The users' transmission scheduling is firstly determined by the outer-loop DRL approach, e.g. the DQN or PPO algorithm, and then the inner-loop optimization is used to adapt either the uplink information transmission or downlink energy transfer to all nodes. A simple and efficient approximation is also proposed to reduce the inner-loop rum time overhead. Numerical results verify that the hierarchical learning framework outperforms typical baselines in terms of the average AoI and proportional fairness among different nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源