论文标题

激光引导车辆的电池中的异常检测:案例研究

Anomaly detection in laser-guided vehicles' batteries: a case study

论文作者

Lombardo, Gianfranco, Cagnoni, Stefano, Cavalli, Stefano, Gonzáles, Juan José Contreras, Monica, Francesco, Mordonini, Monica, Tomaiuolo, Michele

论文摘要

在时间序列中检测异常数据是模式识别和机器学习的一项非常相关的任务,许多可能的应用包括预防医学疾病的范围,例如检测健康状况的早期改变,然后才能清楚地将其定义为“疾病”到监测工业工厂。关于后一种应用,检测工业植物状况的异常首先会防止严重的损害赔偿,这可能会长时间中断生产过程。其次,它允许通过将其限制在紧急情况下进行最佳维护干预措施。同时,他们通常遵循固定的审慎时间表,根据该计划在预期寿命结束之前替换了组件。本文介绍了一项案例研究,以监视激光引导车辆(LGVS)电池的状态,我们在其上作为对项目超级计算项目的贡献(超级计算统一平台,艾米莉亚·罗马格纳),旨在建立和展示区域高性能计算平台,以代表促进ITALIAN ITALIAN ITALIAN ITALIAN超级精加工环境,以实现计算和计算数据的启动。

Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源