论文标题
向日葵猜测证明了
The Sunflower Conjecture Proven
论文作者
论文摘要
本文通过确认家庭$ {\ Mathcal f} $ sets n everles $ m $的$ {\ mathcal f} $,证明了向日葵的猜想。 > [ck \ log(k+1)]^m $,用于常数$ c> 0 $ $ c> $ $ m $和$ k $,其中$ k $ -sunflower代表了一个$ k $的家族,与$ k $不同的套件,带有常见的配对交叉点。
This paper proves the sunflower conjecture by confirming that a family ${\mathcal F}$ of sets each of cardinality at most $m$ includes a $k$-sunflower, if $|{\mathcal F}| >[ ck \log (k+1)]^m$ for a constant $c>0$ independent of $m$ and $k$, where $k$-sunflower stands for a family of $k$ different sets with common pair-wise intersections.