论文标题

向日葵猜测证明了

The Sunflower Conjecture Proven

论文作者

Fukuyama, Junichiro

论文摘要

本文通过确认家庭$ {\ Mathcal f} $ sets n everles $ m $的$ {\ mathcal f} $,证明了向日葵的猜想。 > [ck \ log(k+1)]^m $,用于常数$ c> 0 $ $ c> $ $ m $和$ k $,其中$ k $ -sunflower代表了一个$ k $的家族,与$ k $不同的套件,带有常见的配对交叉点。

This paper proves the sunflower conjecture by confirming that a family ${\mathcal F}$ of sets each of cardinality at most $m$ includes a $k$-sunflower, if $|{\mathcal F}| >[ ck \log (k+1)]^m$ for a constant $c>0$ independent of $m$ and $k$, where $k$-sunflower stands for a family of $k$ different sets with common pair-wise intersections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源