论文标题
来自多光谱和全天候商业卫星图像的河流分类的深度学习模型
Deep Learning Models for River Classification at Sub-Meter Resolutions from Multispectral and Panchromatic Commercial Satellite Imagery
论文作者
论文摘要
从评估季节性干旱和洪水的社会影响到气候变化的大规模影响,对地球地表水的遥感至关重要。因此,关于从卫星图像分类的水分类的大量文献存在。然而,以前的方法受到1)公共卫星图像的空间分辨率的限制,2)在像素级别运行的分类方案,以及3)需要多个光谱带。我们通过1)使用商业图像进行最先进的图像,并具有30 cm和1.2 m的全光谱和多光谱分辨率,2)开发多个完全卷积神经网络(FCN),这些神经网络(FCN)可以学习水体的形态特征,除了它们的频谱外,以及3)可以从Panchromantic Miganter中分类的水。这项研究着重于北极河流,使用Quickbird,Worldview和Geoeye卫星的图像。由于在如此高分辨率下没有培训数据,因此我们手动构建这些数据。首先,我们使用8波段多光谱传感器的RGB和NIR频段。这些受过训练的模型都具有出色的精度,并在验证数据上召回了超过90%的验证模型,并通过对特定于卫星图像的训练数据进行预处理的帮助。然后,在一种新颖的方法中,我们使用多光谱模型的结果来生成FCN的训练数据,而FCN只需要全天态图像,其中更多的可用。尽管功能空间较小,但这些模型仍然可以达到超过85%的精确度和召回率。我们向遥感社区提供开源代码和经过训练的模型参数,该遥感社区以极高的精确度和2个数量级的空间分辨率铺平了通往广泛的环境水文学应用程序的道路。
Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.