论文标题

OTFS启用URLLC的预测预编码器设计:一种深度学习方法

Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach

论文作者

Liu, Chang, Li, Shuangyang, Yuan, Weijie, Liu, Xuemeng, Ng, Derrick Wing Kwan

论文摘要

本文研究了实现超级可靠的低延迟通信(URLLC)的正交时间频率空间(OTFS)的传输。为了确保出色的可靠性性能,务实的预编码器设计是一种有效且必不可少的解决方案。但是,该设计需要在发射器(ICSIT)上进行准确的瞬时通道状态信息,这在实践中并不总是可用。在此激励的情况下,我们采用了一种深度学习(DL)方法来利用估计的历史延迟多普勒域通道(DDC)的隐性特征,以直接预测下一个时间范围中要采用的预编码器,以最大程度地降低帧错误率(FER),从而无需获得ICSIT即可进一步改善系统可靠性。为此,我们首先建立了预测性传输协议,并为预编码器设计提出了一个一般问题,其中封闭形式的理论表达式被得出作为表征系统可靠性的目标函数。然后,我们提出了一个基于DL的预测编码器设计框架,该框架利用了一种无监督的学习机制来提高所提出的方案的可实用性。作为对拟议框架的实现,我们设计了预编码器设计的DDCS感知卷积长短期内存(CLSTM)网络,其中采用了卷积神经网络和LSTM模块,以促进从估计的历史DDC中提取空间特征,以进一步增强先进的效果。仿真结果表明,所提出的方案促进了灵活的可靠性延迟权衡,并实现了出色的FER性能,该绩效接近了由精灵辅助基准获得的下限,该基准在发射器和接收器上都需要完美的ICSI。

This paper investigates the orthogonal time frequency space (OTFS) transmission for enabling ultra-reliable low-latency communications (URLLC). To guarantee excellent reliability performance, pragmatic precoder design is an effective and indispensable solution. However, the design requires accurate instantaneous channel state information at the transmitter (ICSIT) which is not always available in practice. Motivated by this, we adopt a deep learning (DL) approach to exploit implicit features from estimated historical delay-Doppler domain channels (DDCs) to directly predict the precoder to be adopted in the next time frame for minimizing the frame error rate (FER), that can further improve the system reliability without the acquisition of ICSIT. To this end, we first establish a predictive transmission protocol and formulate a general problem for the precoder design where a closed-form theoretical FER expression is derived serving as the objective function to characterize the system reliability. Then, we propose a DL-based predictive precoder design framework which exploits an unsupervised learning mechanism to improve the practicability of the proposed scheme. As a realization of the proposed framework, we design a DDCs-aware convolutional long short-term memory (CLSTM) network for the precoder design, where both the convolutional neural network and LSTM modules are adopted to facilitate the spatial-temporal feature extraction from the estimated historical DDCs to further enhance the precoder performance. Simulation results demonstrate that the proposed scheme facilitates a flexible reliability-latency tradeoff and achieves an excellent FER performance that approaches the lower bound obtained by a genie-aided benchmark requiring perfect ICSI at both the transmitter and receiver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源