论文标题
MYI-NET:从心血管MRI图像对心肌梗死的全自动检测和定量
MyI-Net: Fully Automatic Detection and Quantification of Myocardial Infarction from Cardiovascular MRI Images
论文作者
论文摘要
当动脉向心脏提供血液的动脉突然被阻塞时,就会发生“心脏病发作”或心肌梗塞(MI)。成像MI的“金标准”方法是心血管磁共振成像(MRI),静脉内给予了基于do的gadolinium的对比度(晚期增强剂)。但是,不存在“金标准”完全自动化的MI定量方法。在这项工作中,我们提出了一个端到端的全自动系统(MYI-NET),用于在MRI图像中检测和量化MI。由于实验室的技术变异性以及数据和标签的固有问题,这有可能减少不确定性。我们的系统由四个处理阶段组成,旨在维持跨量表的信息流。首先,使用在Resnet和Moblienet架构上构建的功能提取器生成原始MRI图像的功能。接下来是彻底的空间金字塔池(ASPP),以在不同尺度上产生空间信息,以保留更多的图像上下文。 ASPP和初始低水平特征的高级特征在第三阶段加入,然后传递到第四阶段,在该阶段,通过向上采样恢复了空间信息,以将最终图像分割输出产生:i)背景,ii)ii)心肌,iii)血液和IV)疤痕区域。将新模型与最先进的模型和手动量化进行了比较。我们的模型在全球分割和疤痕组织检测中相对于最新的工作表现出了良好的表现,其中包括在匹配的疤痕像素与临床医生生产的轮廓方面的性能更好。
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.