论文标题

Turán数量的有序紧密的超速Paths

Turán Numbers of Ordered Tight Hyperpaths

论文作者

Bright, John P., Milans, Kevin G., Porter, Jackson

论文摘要

订购的HyperGraph是一个HyperGraph $ G $,其顶点套装$ V(g)$是线性订购的。当$ r \ l \ le s <2r $和$ n $均匀时,我们发现$ r $ rubiform $ s $ s $ s $ s $ s $ vertex的$ s $ s $ vertex紧密路径$ p^{(r)} _ s $(带顶点)的Turán号我们的结果暗示$ \ mathrm {ex} _ {>}(n,p^{(r)} _ s)=(1- \ frac {1} {1} {2^{s-r}} + o(1))\ \ binom {n}当$ r \ ge 2s $时,$ \ mathrm {ex} _ {>}的渐近学(n,p^{(r)} _ s)$保持打开状态。对于$ r = 3 $,我们给出了$ r $ rubiform $ n $ n $ vertex HyperGraph不包含$ p^{(r)} _ s $的构造,我们认为这是渐近的极端。

An ordered hypergraph is a hypergraph $G$ whose vertex set $V(G)$ is linearly ordered. We find the Turán numbers for the $r$-uniform $s$-vertex tight path $P^{(r)}_s$ (with vertices in the natural order) exactly when $r\le s < 2r$ and $n$ is even; our results imply $\mathrm{ex}_{>}(n,P^{(r)}_s)=(1-\frac{1}{2^{s-r}} + o(1))\binom{n}{r}$ when $r\le s<2r$. When $r\ge 2s$, the asymptotics of $\mathrm{ex}_{>}(n,P^{(r)}_s)$ remain open. For $r=3$, we give a construction of an $r$-uniform $n$-vertex hypergraph not containing $P^{(r)}_s$ which we conjecture to be asymptotically extremal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源