论文标题

球形对称性的全球演变,用于自我磨削的巨大领域

Global evolution in spherical symmetry for self-gravitating massive fields

论文作者

LeFloch, Philippe G., Mena, Filipe C., Nguyen, The-Cang

论文摘要

我们对在其自身的重力场下演变的大规模标量场的全局动力学感兴趣,在本文中,我们研究了Einstein场方程的球形对称解,以及具有二次潜力的Klein-Gordon方程。对于初始值问题,当在对称中心的顶点上规定初始数据时,我们就建立了全球存在理论。寻求邦迪坐标中适当的概括解决方案,该解决方案的规律性较低,可能很大但有限的邦迪质量。克里斯托杜洛(Christodoulou)首先建立了类似的结果。为了应对大规模领域,我们必须克服一些挑战,并显着修改Christodoulou的原始方法。首先,我们在球形对称性中以非本地和非线性双曲线方程式制定了爱因斯坦 - 克莱因 - 戈登系统,并通过仔细研究大规模领域的全球动力学行为,我们建立了有关爱因斯坦操作员的各种估计值,霍克金质量,邦德质量和邦德质量,包括积极性和单调性。重要的是,除了在对称中心的正规化外,我们还发现还必须在无效的无穷大。我们还建立了新的能量和衰减估计,包括正则化和广义解决方案。

We are interested in the global dynamics of a massive scalar field evolving under its own gravitational field and, in this paper, we study spherically symmetric solutions to Einstein's field equations coupled with a Klein-Gordon equation with quadratic potential. For the initial value problem we establish a global existence theory when initial data are prescribed on a future light cone with vertex at the center of symmetry. A suitably generalized solution in Bondi coordinates is sought which has low regularity and possibly large but finite Bondi mass. A similar result was established first by Christodoulou for massless fields. In order to deal with massive fields, we must overcome several challenges and significantly modify Christodoulou's original method. First of all, we formulate the Einstein-Klein-Gordon system in spherical symmetry as a non-local and nonlinear hyperbolic equation and, by carefully investigating the global dynamical behavior of the massive field, we establish various estimates concerning the Einstein operator, the Hawking mass, and the Bondi mass, including positivity and monotonicity properties. Importantly, in addition to a regularization at the center of symmetry we find it necessary to also introduce a regularization at null infinity. We also establish new energy and decay estimates for, both, regularized and generalized solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源