论文标题

Borel动力学中的Bratteli图

Bratteli diagrams in Borel dynamics

论文作者

Bezuglyi, Sergey, Jorgensen, Palle E. T., Karpel, Olena, Sanadhya, Shrey

论文摘要

Bratteli-Vershik模型已非常成功地应用于各种动力学系统的研究,尤其是在Cantor Dynamics中。在本文中,我们研究了形成非紧凑型Borel动力学系统模型的广义Bratteli图的路径空间的动力学。广义的Bratteli图在每个级别上具有无限的许多顶点,因此相应的发射矩阵也是无限的。我们强调广义和经典曲折图之间的差异(和相似性)。我们的主要结果是:$(i)$我们利用Perron-Frobenius理论来实现无限的矩阵来建立标准的存在和尾巴不变的路径空间测量的唯一性(概率和$σ$ -finite)。 $(ii)$我们为尾部等效关系的拓扑传递提供标准。 $(iii)$我们描述了一类固定的概括bratteli图(因此是borel动力学系统),即:$(a)$不支持概率不变的度量,$(b)$在尾巴等价关系方面并不是独特的。 $(iv)$我们描述了可以或不能接收连续的Vershik地图并构建Vershik地图的一类广义Bratteli图,该图是(非本地紧凑)波兰空间的最小同构。 $(v)$我们提供了随机矩阵理论的应用,以分析具有正复发矩阵的图表。

Bratteli-Vershik models have been very successfully applied to the study of various dynamical systems, in particular, in Cantor dynamics. In this paper, we study dynamics on the path spaces of generalized Bratteli diagrams that form models for non-compact Borel dynamical systems. Generalized Bratteli diagrams have countably infinite many vertices at each level, thus the corresponding incidence matrices are also countably infinite. We emphasize differences (and similarities) between generalized and classical Bratteli diagrams. Our main results: $(i)$ We utilize Perron-Frobenius theory for countably infinite matrices to establish criteria for the existence and uniqueness of tail-invariant path space measures (both probability and $σ$-finite). $(ii)$ We provide criteria for the topological transitivity of the tail equivalence relation. $(iii)$ We describe classes of stationary generalized Bratteli diagrams (hence Borel dynamical systems) that: $(a)$ do not support a probability tail-invariant measure, $(b)$ are not uniquely ergodic with respect to the tail equivalence relation. $(iv)$ We describe classes of generalized Bratteli diagrams which can or cannot admit a continuous Vershik map and construct a Vershik map which is a minimal homeomorphism of a (non locally compact) Polish space. $(v)$ We provide an application of the theory of stochastic matrices to analyze diagrams with positive recurrent incidence matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源