论文标题

平面分形紧密结合模型中的高谱统计

Level-spectra Statistics in Planar Fractal Tight-Binding Models

论文作者

Yao, Qi, Yang, Xiao-Tian, Iliasov, Askar A., Katsnelson, M. I., Yuan, Shengjun

论文摘要

在此通信中,我们研究了当非相互作用的电子气体限制在\ textit {sierpińskicarpet}(\ textit {sc})lattices中时,我们研究了级别的统计数据。这些\ textit {sc}晶格是在$ self $ $ $和$ gene $模式的两个代表性模式下构建的,并根据面积 - 周期性缩放法分类为两个子类晶格。通过使用两个级别统计的工具\ iffalse最近的间距分布和替代差距比率分布\ fi的奇异连续光谱和临界性状,我们确定既遵守损坏的翻译对称性和远距离对称顺序,均遵守了临界阶段。由于两者都属于高斯正交合奏,因此在数值上确认了wigner样的猜想。在准二级晶格〜\ cite {zhong1998level}中观察到了类比。此外,这个临界阶段分离了安德森模型中金属 - 绝缘体过渡边缘附近的关键行为。自相似特征的晶格拓扑可以引起水平聚类行为。

In this communication, we study the level-spectra statistics when a noninteracting electron gas is confined in \textit{Sierpiński Carpet} (\textit{SC}) lattices. These \textit{SC} lattices are constructed under two representative patterns of the $self$ and $gene$ patterns, and classified into two subclass lattices by the area-perimeter scaling law. By the singularly continuous spectra and critical traits using two level-statistic tools\iffalse the nearest spacing distribution and alternative gap-ratio distribution\fi, we ascertain that both obey the critical phase due to broken translation symmetry and the long-range order of scaling symmetry. The Wigner-like conjecture is confirmed numerically since both belong to the Gaussian orthogonal ensemble. An analogy was observed in a quasiperiodic lattice~\cite{Zhong1998Level}. In addition, this critical phase isolates the crucial behavior near the metal-insulator transition edge in Anderson model. The lattice topology of the self-similarity feature can induce level clustering behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源