论文标题

行使马尔可夫连锁店

Rowmotion Markov Chains

论文作者

Defant, Colin, Li, Rupert, Nestoridi, Evita

论文摘要

RowMotion是有限poset $ p $的订单理想的分布晶格$ j(p)$ j(p)$ j(p)上的某些精心培养的二主驾驶。我们通过将概率$ p_x $分配给p $中的每个$ x \,并使用这些概率将随机性插入RowMotion的原始定义,从而介绍了RowMotion Markov链$ {\ bf m} _ {J(p)} $。更普遍地,我们引入了一个非常广阔的托法尔马克夫连锁系列,灵感来自前锋的广义切换概念。我们表征了何时不可简化的Markov链时,我们表明每个Toggle Markov链都有一个非常简单的固定分布。 我们还将行使马尔可夫链的第二个概括为半发达晶格的上下文。给定一个半散的晶格$ l $,我们为每个join-mirredible元素$ j $ of $ l $分配了一个概率$ p_j $,并使用这些概率来构建RowMotion Markov链$ {\ bf m} _l $。假设每个概率$ p_j $严格介于$ 0 $和$ 1 $之间,我们证明$ {\ bf m} _ {l} $是不可约的。我们还计算了通过将最小元素和最大元素添加到两个链的分离结合中获得的晶格的行Markov链的固定分布。 我们将任意半散晶格$ l $的$ {\ bf m} _ {l} $的混合时间约束。在特殊情况下,当$ l $是布尔晶格时,我们使用光谱方法来获得对混合时间的更强估计,这表明布尔晶格的行使马尔可夫链显示出截止现象。

Rowmotion is a certain well-studied bijective operator on the distributive lattice $J(P)$ of order ideals of a finite poset $P$. We introduce the rowmotion Markov chain ${\bf M}_{J(P)}$ by assigning a probability $p_x$ to each $x\in P$ and using these probabilities to insert randomness into the original definition of rowmotion. More generally, we introduce a very broad family of toggle Markov chains inspired by Striker's notion of generalized toggling. We characterize when toggle Markov chains are irreducible, and we show that each toggle Markov chain has a remarkably simple stationary distribution. We also provide a second generalization of rowmotion Markov chains to the context of semidistrim lattices. Given a semidistrim lattice $L$, we assign a probability $p_j$ to each join-irreducible element $j$ of $L$ and use these probabilities to construct a rowmotion Markov chain ${\bf M}_L$. Under the assumption that each probability $p_j$ is strictly between $0$ and $1$, we prove that ${\bf M}_{L}$ is irreducible. We also compute the stationary distribution of the rowmotion Markov chain of a lattice obtained by adding a minimal element and a maximal element to a disjoint union of two chains. We bound the mixing time of ${\bf M}_{L}$ for an arbitrary semidistrim lattice $L$. In the special case when $L$ is a Boolean lattice, we use spectral methods to obtain much stronger estimates on the mixing time, showing that rowmotion Markov chains of Boolean lattices exhibit the cutoff phenomenon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源