论文标题

用于哈密顿模拟的一般量子算法,应用于非亚伯晶格理论

General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory

论文作者

Davoudi, Zohreh, Shaw, Alexander F., Stryker, Jesse R.

论文摘要

通过关注量子模拟的通用量子计算,并通过晶格量规理论的示例引入了相当通用的量子算法,这些算法可以有效地模拟某些类别的相互作用,这些相互作用的相互作用包括多个(肺泡和费尔米语)量子数与非宽度功能系数的相关变化。特别是,我们使用单数值分解技术分析了哈密顿术语的对角线化,并讨论如何在数字化的时间进化运算符中实现已实现的对角线单位。所研究的晶格量规理论是1+1个尺寸的SU(2)量规理论,并耦合到一个交错的费米子的一种味道,为此,在不同的计算模型中提供了完整的量子资源分析。该算法被证明适用于高维理论以及其他阿贝尔和非阿布尔仪表理论。所选的示例进一步证明了采用有效的理论表述的重要性:证明,使用环路,弦,字符串和强体自由度明确规格不变的配方简化了算法,可以简化算法并降低与基于Angular-Mortemum以及Schwinger-Boson-Mosentum以及Schwinger-Boson的自由度相比的成本。尽管数字化的模拟不确定,但循环 - 弦线制剂仍保留了非亚伯仪对称性,而无需进行昂贵的控制操作。这种理论和算法考虑因素对于量子模拟与自然相关的其他复杂理论可能至关重要。

With a focus on universal quantum computing for quantum simulation, and through the example of lattice gauge theories, we introduce rather general quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple (bosonic and fermionic) quantum numbers with non-trivial functional coefficients. In particular, we analyze diagonalization of Hamiltonian terms using a singular-value decomposition technique, and discuss how the achieved diagonal unitaries in the digitized time-evolution operator can be implemented. The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions, for which a complete quantum-resource analysis within different computational models is presented. The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories. The example chosen further demonstrates the importance of adopting efficient theoretical formulations: it is shown that an explicitly gauge-invariant formulation using loop, string, and hadron degrees of freedom simplifies the algorithms and lowers the cost compared with the standard formulations based on angular-momentum as well as the Schwinger-boson degrees of freedom. The loop-string-hadron formulation further retains the non-Abelian gauge symmetry despite the inexactness of the digitized simulation, without the need for costly controlled operations. Such theoretical and algorithmic considerations are likely to be essential in quantumly simulating other complex theories of relevance to nature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源