论文标题

Funknn:功能生成的神经插值

FunkNN: Neural Interpolation for Functional Generation

论文作者

Khorashadizadeh, AmirEhsan, Chaman, Anadi, Debarnot, Valentin, Dokmanić, Ivan

论文摘要

我们可以构建连续的生成模型,这些模型可以在跨尺度上概括,可以在任何坐标上进行评估,允许对精确导数进行计算,并且在概念上很简单?现有基于MLP的架构的样本比具有良好卷积电感偏见的网格发电机更糟糕。专注于在不同尺度上生成图像的模型可以做得更好,但是采用不连续评估图像和衍生物的复杂体系结构。我们采用信号处理的角度,并将连续图像产生视为样品中的插值。确实,正确采样的离散图像包含有关低空间频率的所有信息。然后,问题是如何在满足上述设计标准时以数据驱动方式推断频谱。我们的答案是FunKnn - 一个新的卷积网络,该网络学习如何在任意坐标处重建连续图像,并可以应用于任何图像数据集。结合一个离散生成模型,它变成了功能发电机,可以在连续不良的逆问题中充当先验。我们表明,Funknn产生了高质量的连续图像,并且由于其基于补丁的设计,表现出强大的分发性能。我们进一步展示了其在具有精确空间衍生物的几种风格化的反问题中的性能。

Can we build continuous generative models which generalize across scales, can be evaluated at any coordinate, admit calculation of exact derivatives, and are conceptually simple? Existing MLP-based architectures generate worse samples than the grid-based generators with favorable convolutional inductive biases. Models that focus on generating images at different scales do better, but employ complex architectures not designed for continuous evaluation of images and derivatives. We take a signal-processing perspective and treat continuous image generation as interpolation from samples. Indeed, correctly sampled discrete images contain all information about the low spatial frequencies. The question is then how to extrapolate the spectrum in a data-driven way while meeting the above design criteria. Our answer is FunkNN -- a new convolutional network which learns how to reconstruct continuous images at arbitrary coordinates and can be applied to any image dataset. Combined with a discrete generative model it becomes a functional generator which can act as a prior in continuous ill-posed inverse problems. We show that FunkNN generates high-quality continuous images and exhibits strong out-of-distribution performance thanks to its patch-based design. We further showcase its performance in several stylized inverse problems with exact spatial derivatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源