论文标题

高维乘法基因组数据的功能综合贝叶斯分析

Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data

论文作者

Bhattacharyya, Rupam, Henderson, Nicholas, Baladandayuthapani, Veerabhadran

论文摘要

在收集和传播多平台分子和基因组数据方面的快速进步导致了汇总此类数据以了解,预防和治疗人类疾病的巨大机会。虽然在多摩变数据整合方法中进行了重大改进,以发现预后和治疗的生物学标记和机制,但管理这些复杂机制的精确细胞功能仍然需要详细且数据驱动的De-Novo评估。我们提出了一个称为高维乘法基因组数据(FIBAG)的功能性贝叶斯分析的框架,该框架允许同时鉴定蛋白质组生物标志物的上游功能证据,并在贝叶斯变量选择中掺入此类知识以改善信号检测。 Fibag采用高斯工艺模型的汇合来通过贝叶斯因素量化(可能是非线性)功能证据,然后将其映射到新的校准的尖峰和slab之前,从而指导选择并提供与患者结局关联的功能相关性。使用模拟,我们说明了具有功能校准的整合方法如何比非综合方法具有更高的检测疾病相关标记的功率。我们通过对14种癌症类型的Pan-Canter分析来证明腓骨的盈利能力,以识别和评估与癌症干和患者生存相关的蛋白质组标志物的细胞机制。

Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源