论文标题
从空间扩展的动力系统中,厄尔尼诺南部振荡的随机概念模型的严格推导
Rigorous Derivation of Stochastic Conceptual Models for the El Niño-Southern Oscillation from a Spatially-Extended Dynamical System
论文作者
论文摘要
厄尔尼诺 - 南方振荡(ENSO)是热带地区最主要的年际变化,严重影响了全球天气和气候。在本文中,该ENSO的低阶概念模型的框架系统地源自具有完整数学严格的空间扩展的随机动力学系统。空间扩展的随机动力学系统具有线性,确定性和稳定的动力核心。它还用乘法噪声来利用一个简单的随机过程来参数化季节内风爆发活动。基于特征值分解方法的主要成分分析被应用于提供低阶概念模型,该模型成功地表征了东太平洋厄尔尼诺事件的大规模动力学和非高斯统计特征。尽管维度较低,但概念建模框架仍包含具有详细时空图案的所有大气,海洋和海面温度成分的输出。这与许多现有的概念模型仅关注一组指定状态变量。许多最先进的低阶模型的随机版本,例如充电 - 放电和延迟的振荡器,在此框架内成为特殊情况。这种低阶模型的严格推导提供了一种将模型与不同时空复杂性连接的独特方法。该框架还促进了随机噪声在促进ENSO的大规模动力学方面的瞬时和记忆效应。
El Niño-Southern Oscillation (ENSO) is the most predominant interannual variability in the tropics, significantly impacting global weather and climate. In this paper, a framework of low-order conceptual models for the ENSO is systematically derived from a spatially-extended stochastic dynamical system with full mathematical rigor. The spatially-extended stochastic dynamical system has a linear, deterministic, and stable dynamical core. It also exploits a simple stochastic process with multiplicative noise to parameterize the intraseasonal wind burst activities. A principal component analysis based on the eigenvalue decomposition method is applied to provide a low-order conceptual model that succeeds in characterizing the large-scale dynamical and non-Gaussian statistical features of the eastern Pacific El Niño events. Despite the low dimensionality, the conceptual modeling framework contains outputs for all the atmosphere, ocean, and sea surface temperature components with detailed spatiotemporal patterns. This contrasts with many existing conceptual models focusing only on a small set of specified state variables. The stochastic versions of many state-of-the-art low-order models, such as the recharge-discharge and the delayed oscillators, become special cases within this framework. The rigorous derivation of such low-order models provides a unique way to connect models with different spatiotemporal complexities. The framework also facilitates understanding the instantaneous and memory effects of stochastic noise in contributing to the large-scale dynamics of the ENSO.