论文标题

WL-ALIGN:Weisfeiler-Lehman通过正规表示学习使整个网络对齐用户对齐

WL-Align: Weisfeiler-Lehman Relabeling for Aligning Users across Networks via Regularized Representation Learning

论文作者

Liu, Li, Chen, Penggang, Li, Xin, Cheung, William K., Zhang, Youmin, Liu, Qun, Wang, Guoyin

论文摘要

使用图表表示学习在跨网络的用户进行对齐,在在低维嵌入空间中完成对齐的情况下有效。但是,实现高度精确的对齐仍然具有挑战性,尤其是当遇到具有长距离连接的节点时,遇到了标记的锚。为了减轻这一限制,我们有目的地设计了WL-Align,该Align采用了正规的表示学习框架来学习独特的节点表示。它扩展了Weisfeiler-Lehman同类测试,并在“跨网络Weisfeiler-Lehman Relabeling”和“接近性能表示表示学习”的交替阶段中学习对齐。通过迭代基于锚的标签传播和基于相似性的哈希,可以利用已知的锚点与不同节点的连通性,以有效且稳健的方式利用了基于锚的标签传播,从而实现了跨网络WEISFEILER-LEHMAN RERABELing。表示模块保留了单个网络内的二阶接近性,并由跨网络Weisfeiler-Lehman Hash标签正规化。关于现实世界和合成数据集的广泛实验表明,我们提出的WL-Align优于最新方法,在“确切匹配”方案中实现了显着的性能改善。 WL-Align的数据和代码可在https://github.com/chenpenggang/wlaligncode上找到。

Aligning users across networks using graph representation learning has been found effective where the alignment is accomplished in a low-dimensional embedding space. Yet, achieving highly precise alignment is still challenging, especially when nodes with long-range connectivity to the labeled anchors are encountered. To alleviate this limitation, we purposefully designed WL-Align which adopts a regularized representation learning framework to learn distinctive node representations. It extends the Weisfeiler-Lehman Isormorphism Test and learns the alignment in alternating phases of "across-network Weisfeiler-Lehman relabeling" and "proximity-preserving representation learning". The across-network Weisfeiler-Lehman relabeling is achieved through iterating the anchor-based label propagation and a similarity-based hashing to exploit the known anchors' connectivity to different nodes in an efficient and robust manner. The representation learning module preserves the second-order proximity within individual networks and is regularized by the across-network Weisfeiler-Lehman hash labels. Extensive experiments on real-world and synthetic datasets have demonstrated that our proposed WL-Align outperforms the state-of-the-art methods, achieving significant performance improvements in the "exact matching" scenario. Data and code of WL-Align are available at https://github.com/ChenPengGang/WLAlignCode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源