论文标题

对于线性模型,哪些估计器是公正的?

What Estimators Are Unbiased For Linear Models?

论文作者

Lei, Lihua, Wooldridge, Jeffrey

论文摘要

汉森(Hansen)[2022,计量经济学]最近发人深省的论文证明,高斯 - 马尔科夫定理(Gauss-Markov Theorem)继续持有,而无需要求竞争估计器在结果的向量中是线性的。尽管有优雅的证据,但作者和其他研究人员表明,汉森(Hansen)论文的主要结果并没有扩展经典的高斯 - 马尔科夫(Gauss-Markov)定理,因为在他的条件下不存在非线性无偏估计器。为了解决这个问题,Hansen [2022]在最新版本中添加了语句,并具有非线性无偏估计器的新条件。 在活泼的讨论中,我们研究了一个基本问题:对于给定的线性模型,哪些估计值是公正的?我们首先审查了可以追溯到1960年代的一系列高度相关的工作,但不幸的是,这还没有引起足够的关注。然后,我们介绍符号,使我们能够重述并统一早期工作和汉森[2022]的结果。新框架还使我们能够在以前的结论之间强调差异。最后,我们为线性模型的不同限制下建立了新的表示定理,以使系数和协方差矩阵仅采用有限数量的值,估计值的较高矩,以及存在的因变量较高,并且错误分布是独立的,完全连续的,或者由另一个概率性度量统治。我们的结果大大概括了对汉森[2022]的平行评论主张,以及Koopmann [1982]的显着结果。

The recent thought-provoking paper by Hansen [2022, Econometrica] proved that the Gauss-Markov theorem continues to hold without the requirement that competing estimators are linear in the vector of outcomes. Despite the elegant proof, it was shown by the authors and other researchers that the main result in the earlier version of Hansen's paper does not extend the classic Gauss-Markov theorem because no nonlinear unbiased estimator exists under his conditions. To address the issue, Hansen [2022] added statements in the latest version with new conditions under which nonlinear unbiased estimators exist. Motivated by the lively discussion, we study a fundamental problem: what estimators are unbiased for a given class of linear models? We first review a line of highly relevant work dating back to the 1960s, which, unfortunately, have not drawn enough attention. Then, we introduce notation that allows us to restate and unify results from earlier work and Hansen [2022]. The new framework also allows us to highlight differences among previous conclusions. Lastly, we establish new representation theorems for unbiased estimators under different restrictions on the linear model, allowing the coefficients and covariance matrix to take only a finite number of values, the higher moments of the estimator and the dependent variable to exist, and the error distribution to be discrete, absolutely continuous, or dominated by another probability measure. Our results substantially generalize the claims of parallel commentaries on Hansen [2022] and a remarkable result by Koopmann [1982].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源