论文标题
智能家庭应用中CIOT设备的联合学习图
Graph Federated Learning for CIoT Devices in Smart Home Applications
论文作者
论文摘要
本文介绍了跨核心学习(FL)框架中的统计和系统异质性问题,在智能建筑物中存在有限数量的物联网(CIOT)设备的框架。我们提出了一种新型的图形信号处理(GSP)为启发的聚合规则,基于图形滤波,称为``g-fedfilt''。提出的聚合器可以根据图的拓扑结构进行结构化信息流。这种行为允许捕获CIOT设备和训练域特异性模型的互连。嵌入式的图形滤波器配备了可调参数,该参数可以在域 - 不稳定和域特异性FL之间进行连续的权衡。在域 - 不可替代的情况下,它迫使g-fedfilt的作用类似于常规联邦平均(FIDAVG)聚合规则。所提出的G-FEDFILT还可以基于图形连接的固有的平滑聚类,而无需明确指定,从而进一步增强了模型在框架中的个性化。此外,拟议的计划还享有一种沟通效率的时间表,以减轻系统的异质性。这是通过自适应调整训练数据样本的量和模型梯度的稀疏度来实现的,以减少交流对外的同步和延迟。仿真结果表明,与传统的FedAvg相比,提议的G-FEDFILT的分类准确性高达$ 3.99 \%$,当时在统计上异质性的本地数据集上,该模型在统计上异质性的本地数据集上的模型个性化,而在测试模型的一般化情况下,它的准确性高达$ 2.41 \%$ $的准确性。
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.