论文标题

通过JKO方案使流神经网络归一化

Normalizing flow neural networks by JKO scheme

论文作者

Xu, Chen, Cheng, Xiuyuan, Xie, Yao

论文摘要

标准化流程是一类深层生成模型,用于有效采样和可能性估计,这可以实现有吸引力的性能,尤其是在高维度下。通常使用一系列可逆残留块实现流量。现有作品采用特殊的网络体系结构和流轨迹的正规化。在本文中,我们开发了一个名为JKO-IFLOW的神经流动网络,灵感来自Jordan-Kinderleherer-otto(JKO)方案,该方案展现了Wasserstein梯度流的离散时间动态。所提出的方法将残留块一个接一个地堆叠,从而可以有效地对残差块进行构成较有效的块训练,避免采样SDE轨迹和评分匹配或变分学习,从而减少了端到端训练中的记忆负荷和困难。我们还开发了流动网络的自适应时间重聚体化,并在概率空间中逐渐改进了诱导轨迹,以进一步提高模型精度。合成和真实数据的实验表明,与现有的流量和扩散模型相比,所提出的JKO-IFLOW网络在计算和记忆成本大大降低的情况下实现了竞争性能。

Normalizing flow is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks. Existing works adopt special network architectures and regularization of flow trajectories. In this paper, we develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which unfolds the discrete-time dynamic of the Wasserstein gradient flow. The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks, avoiding sampling SDE trajectories and score matching or variational learning, thus reducing the memory load and difficulty in end-to-end training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the induced trajectory in probability space to improve the model accuracy further. Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance compared with existing flow and diffusion models at a significantly reduced computational and memory cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源