论文标题

单体类别的共同传感流

Coinductive Streams in Monoidal Categories

论文作者

Di Lavore, Elena, de Felice, Giovanni, Román, Mario

论文摘要

我们介绍了单体流。单体流是因果流函数的概括,可以在笛卡尔单类别类别中定义为任意对称的单体类别。就像流提供纯函数的数据流编程的语义的方式一样,单型流提供了语义为数据流编程提供的语义,并具有以对称性单体类别为代表的过程理论。单体流也形成了反馈单类别。就像我们可以使用共同感应流计算来推理信号流程图的方式一样,我们可以使用共同感应弦图来推理反馈类型类别。例如,我们研究了随机数据流语言的语法,并在随机单流流中使用语义。

We introduce monoidal streams. Monoidal streams are a generalization of causal stream functions, which can be defined in cartesian monoidal categories, to arbitrary symmetric monoidal categories. In the same way that streams provide semantics to dataflow programming with pure functions, monoidal streams provide semantics to dataflow programming with theories of processes represented by a symmetric monoidal category. Monoidal streams also form a feedback monoidal category. In the same way that we can use a coinductive stream calculus to reason about signal flow graphs, we can use coinductive string diagrams to reason about feedback monoidal categories. As an example, we study syntax for a stochastic dataflow language, with semantics in stochastic monoidal streams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源