论文标题

本地模型中的经常性问题

Recurrent Problems in the LOCAL model

论文作者

Agrawal, Akanksha, Augustine, John, Peleg, David, Ramachandran, Srikkanth

论文摘要

本文考虑了Schmid和Suomela [HotSDN'13]引入的分布计算模型,从而推广了本地和交货模型。在此框架中,相同问题的多个实例与它们所应用的子网,随着时间的流逝重复以及需要在线上有效解决。为此,可以依靠初始预处理阶段来计算一些有用的信息。在某些情况下,这种预处理阶段使得克服基于区域的时间下限是可能的。 当前论文的首要贡献是扩大了所支持模型应用的问题类型的范围。除了子网定义的复发问题外,我们还引入了另外两种类型的经常性问题:(i)由部分客户端集定义的实例,以及(ii)由部分固定的输出定义的实例。 我们的第二个贡献是通过检查三个经典图问题的经常性变体来说明受支持框架的多功能性。第一个问题是最小客户端统治集(CD),这是经典主导集问题的经常版本,每个经常性实例都要求我们主导部分客户端集。我们为树木和平面图上的CD提供恒定的时间近似方案。 第二个问题是颜色完成(CC),这是着色问题的复发版本,其中每个经常性实例带有必须完成的部分固定着色(某些顶点)。我们研究完成此任务所需的最小颜色数量和最小颜色总数。 我们研究的第三个问题是长度$ n $的路径上的本地可检查标记(LCL)的经常性版本。我们表明,此类问题的复杂性是$θ(1)$或$θ(n)$,从而扩展了Foerster等人的结果。 [Infocom'19]。

The paper considers the SUPPORTED model of distributed computing introduced by Schmid and Suomela [HotSDN'13], generalizing the LOCAL and CONGEST models. In this framework, multiple instances of the same problem, differing from each other by the subnetwork to which they apply, recur over time, and need to be solved efficiently online. To do that, one may rely on an initial preprocessing phase for computing some useful information. This preprocessing phase makes it possible, in some cases, to overcome locality-based time lower bounds. A first contribution of the current paper is expanding the spectrum of problem types to which the SUPPORTED model applies. In addition to subnetwork-defined recurrent problems, we introduce also recurrent problems of two additional types: (i) instances defined by partial client sets, and (ii) instances defined by partially fixed outputs. Our second contribution is illustrating the versatility of the SUPPORTED framework by examining recurrent variants of three classical graph problems. The first problem is Minimum Client Dominating Set (CDS), a recurrent version of the classical dominating set problem with each recurrent instance requiring us to dominate a partial client set. We provide a constant time approximation scheme for CDS on trees and planar graphs. The second problem is Color Completion (CC), a recurrent version of the coloring problem in which each recurrent instance comes with a partially fixed coloring (of some of the vertices) that must be completed. We study the minimum number of new colors and the minimum total number of colors necessary for completing this task. The third problem we study is a recurrent version of Locally Checkable Labellings (LCL) on paths of length $n$. We show that such problems have complexities that are either $Θ(1)$ or $Θ(n)$, extending the results of Foerster et al. [INFOCOM'19].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源