论文标题
有限元素启发的超图神经网络:应用于流体动力学模拟
A Finite Element-Inspired Hypergraph Neural Network: Application to Fluid Dynamics Simulations
论文作者
论文摘要
深度学习研究的新兴趋势重点是图形神经网络(GNN)在基于网格的连续性力学模拟中的应用。这些学习框架中的大多数都在图形上运行,每个边缘连接两个节点。受到有限元方法中数据连接性的启发,我们提出了一种方法,通过通过元素而不是边缘连接节点来构建超图。在这样的节点元素的超图上定义了一个超图通信网络,该网络模仿了局部刚度矩阵的计算过程。我们称此方法是有限元素启发的超毛神经网络,简而言之($ ϕ $)-GNN。我们进一步为拟议的网络配备了旋转肩variance,并探索了其建模不稳定流体流量系统的能力。在两个常见的基准问题上证明了网络的有效性,即圆形圆柱体和翼型配置周围的流体流动。可以使用插值雷诺数范围内的$ ϕ $ -GNN框架来获得稳定且准确的时间推出预测。该网络还能够将中度推断向较高的雷诺数域以外的训练范围内。
An emerging trend in deep learning research focuses on the applications of graph neural networks (GNNs) for mesh-based continuum mechanics simulations. Most of these learning frameworks operate on graphs wherein each edge connects two nodes. Inspired by the data connectivity in the finite element method, we present a method to construct a hypergraph by connecting the nodes by elements rather than edges. A hypergraph message-passing network is defined on such a node-element hypergraph that mimics the calculation process of local stiffness matrices. We term this method a finite element-inspired hypergraph neural network, in short FEIH($ϕ$)-GNN. We further equip the proposed network with rotation equivariance, and explore its capability for modeling unsteady fluid flow systems. The effectiveness of the network is demonstrated on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. Stabilized and accurate temporal roll-out predictions can be obtained using the $ϕ$-GNN framework within the interpolation Reynolds number range. The network is also able to extrapolate moderately towards higher Reynolds number domain out of the training range.