论文标题
面板数据的异质合成学习者
Heterogeneous Synthetic Learner for Panel Data
论文作者
论文摘要
在个性化的新时代,学习异质治疗效果(HTE)成为许多应用的不可避免的趋势。然而,大多数现有的HTE估计方法都集中在独立和相同分布的观察结果上,并且无法处理常见面板数据设置中的非平稳性和时间依赖性。另一方面,用于面板数据的处理评估者通常忽略了个性化信息。为了填补空白,在本文中,我们初始化了面板数据中HTE估计的研究。在对HTE可识别性的不同假设下,我们提出了相应的异质单侧和两侧合成学习器,即H1SL和H2SL,通过利用最先进的HTE HTE估计器来用于非面板数据并概括合成控制方法,从而允许灵活的数据生成过程。我们建立了拟议估计器的收敛速率。广泛的数值研究证明了所提出的方法的优越性能。
In the new era of personalization, learning the heterogeneous treatment effect (HTE) becomes an inevitable trend with numerous applications. Yet, most existing HTE estimation methods focus on independently and identically distributed observations and cannot handle the non-stationarity and temporal dependency in the common panel data setting. The treatment evaluators developed for panel data, on the other hand, typically ignore the individualized information. To fill the gap, in this paper, we initialize the study of HTE estimation in panel data. Under different assumptions for HTE identifiability, we propose the corresponding heterogeneous one-side and two-side synthetic learner, namely H1SL and H2SL, by leveraging the state-of-the-art HTE estimator for non-panel data and generalizing the synthetic control method that allows flexible data generating process. We establish the convergence rates of the proposed estimators. The superior performance of the proposed methods over existing ones is demonstrated by extensive numerical studies.