论文标题

在深度学习框架中加速的多尺度力学建模

Accelerated multiscale mechanics modeling in a deep learning framework

论文作者

Gupta, Ashwini, Bhaduri, Anindya, Graham-Brady, Lori

论文摘要

微结构异质性影响材料的宏观行为。相反,宏观尺度上的负载分布改变了微结构响应。这些上缩放和下缩的关系通常是使用多尺度有限元(Fe)方法(例如Fe平方($ fe^2 $))建模的。但是,$ fe^2 $需要在微观尺度上进行大量计算,这通常使这种方法难以置信。本文报告了一种基于机器机械师建模的基于机器学习的速度更快的方法。提出的ML驱动的多尺度分析方法使用了ML模型,该ML模型可预测线性弹性纤维增强复合微结构中的局部应力张量场。该ML模型,特别是U-NET深卷积神经网络(CNN),分别训练,以执行纤维的空间排列与相应的2D应力张量张力场之间的映射。该ML模型为上标和局部应力张量场提供有效的弹性材料特性,用于在多尺度分析框架中随后进行下降。与传统的多尺度建模方法相比,使用拟议的ML驱动方法(例如全尺度FE分析)以及基于均质的$ Fe^2 $分析,使用了拟议的ML驱动方法,表明了几个数值示例的计算成本大大降低。这种方法在复杂的异质材料的有效多尺度分析中具有巨大的潜力,并在不确定性定量,设计和优化中应用。

Microstructural heterogeneity affects the macro-scale behavior of materials. Conversely, load distribution at the macro-scale changes the microstructural response. These up-scaling and down-scaling relations are often modeled using multiscale finite element (FE) approaches such as FE-squared ($FE^2$). However, $FE^2$ requires numerous calculations at the micro-scale, which often renders this approach intractable. This paper reports an enormously faster machine learning (ML) based approach for multiscale mechanics modeling. The proposed ML-driven multiscale analysis approach uses an ML-model that predicts the local stress tensor fields in a linear elastic fiber-reinforced composite microstructure. This ML-model, specifically a U-Net deep convolutional neural network (CNN), is trained separately to perform the mapping between the spatial arrangement of fibers and the corresponding 2D stress tensor fields. This ML-model provides effective elastic material properties for up-scaling and local stress tensor fields for subsequent down-scaling in a multiscale analysis framework. Several numerical examples demonstrate a substantial reduction in computational cost using the proposed ML-driven approach when compared with the traditional multiscale modeling approaches such as full-scale FE analysis, and homogenization based $FE^2$ analysis. This approach has tremendous potential in efficient multiscale analysis of complex heterogeneous materials, with applications in uncertainty quantification, design, and optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源