论文标题

个性化的学生属性推理

Personalized Student Attribute Inference

论文作者

Askia, Khalid Moustapha, Meurs, Marie-Jean

论文摘要

准确地预测他们的未来表现可以确保学生成功毕业,并帮助他们节省时间和金钱。但是,实现此类预测面临两个挑战,这主要是由于学生背景的多样性以及不断跟踪他们不断发展的进步的必要性。这项工作的目的是创建一个能够自动检测学生难度的系统,例如预测他们是否可能会失败。我们比较了文献中广泛使用的幼稚方法,该方法使用数据集中可用的属性(例如成绩),并使用个性化方法,我们称为个性化的学生属性推理(PSAI)。使用我们的模型,我们创建个性化属性来捕获每个学生的特定背景。使用机器学习算法(例如决策树,支持向量机或神经网络)比较两种方法。

Accurately predicting their future performance can ensure students successful graduation, and help them save both time and money. However, achieving such predictions faces two challenges, mainly due to the diversity of students' background and the necessity of continuously tracking their evolving progress. The goal of this work is to create a system able to automatically detect students in difficulty, for instance predicting if they are likely to fail a course. We compare a naive approach widely used in the literature, which uses attributes available in the data set (like the grades), with a personalized approach we called Personalized Student Attribute Inference (PSAI). With our model, we create personalized attributes to capture the specific background of each student. Both approaches are compared using machine learning algorithms like decision trees, support vector machine or neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源