论文标题

$ 3 $ - 可加油的汤普森组和链接的三色性

The $3$-colorable subgroup of Thompson's group and tricolorability of links

论文作者

Kodama, Yuya, Takano, Akihiro

论文摘要

从琼斯(Jones)在汤普森(Thompson)组$ f $的代表作品中的工作开始,已经定义和研究了带有有趣属性的$ f $的子组。这些子组之一称为$ 3 $ - 颜色的亚组$ \ mathcal {f} $,该{f} $由其树图给出的``区域''的元素组成。另一方面,琼斯在代表作品中还提供了一种构建$ f $元素的结和链接的方法。因此,探索$ \ Mathcal {f} $中的元素与$ 3 $ - 可加油的链接之间的元素之间的关系是一个自然的问题。在本文中,我们显示$ \ Mathcal {f} $中的所有元素都给出3色链接。

Starting from the work by Jones on representations of Thompson's group $F$, subgroups of $F$ with interesting properties have been defined and studied. One of these subgroups is called the $3$-colorable subgroup $\mathcal{F}$, which consists of elements whose ``regions'' given by their tree diagrams are $3$-colorable. On the other hand, in his work on representations, Jones also gave a method to construct knots and links from elements of $F$. Therefore it is a natural question to explore a relationship between elements in $\mathcal{F}$ and $3$-colorable links in the sense of knot theory. In this paper, we show that all elements in $\mathcal{F}$ give 3-colorable links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源