论文标题

$χ$ SB的一致性在手性阳道理论中具有绝热的连续性

Consistency of $χ$SB in chiral Yang-Mills theory with adiabatic continuity

论文作者

Sheu, Chao-Hsiang, Shifman, Mikhail

论文摘要

我们研究$ψχη$模型中的手性对称性破坏($χ$ sb)(手性费米子扇区包含$ψ^{\ {ij \}} $,$χ_ {[ij} $} s^{1} _ {l} $,并导致对$ \ mathbb {r}^4 $ Physics的影响。中心对称的真空通过双轨变形稳定。随着中心对称性保持在小$ l(s^1)\llλ^{ - 1} $,即处于弱耦合时,预计不会将相位转换为大$ l(s^1)\ggλ^{ - 1} $(在这里$λ$是动态的yang-mills scale)。从小型$ l $ limit开始,我们在给定理论中找到了领先的非扰动校正。 Instanton-Monopole操作员诱导伴随性手性冷凝物$ \langleψ^{\ {\ {ij \}}χ_ {[JK]} \ rangle \ rangle \ neq 0 $ at弱耦合,即在$ l(s^1)\ llλ^{-1} $。然后,绝热连续性告诉我们,$ \langleψ^{\ {ij \}}χ_ {[JK]} \ rangle \ neq 0 $在$ \ mathbb {r}^4 $上存在,完全与预测[2]。同时与$ \langleψ^{\ {ij \}}χ_ {[[JK]} \ rangle \simλ^3δ^i_k $ su($ n_c $)符号符号被强烈折断至其最大值的Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Aubelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian Abelian。

We study the pattern of chiral symmetry breaking ($χ$SB) in the $ψχη$ model (with the chiral fermion sector containing $ ψ^{\{ij\}}$, $χ_{[ij]}$, and $η_{i}^{A}$, see [1]) on $\mathbb{R}^3 \times S^{1}_{L}$ and derive implications to $\mathbb{R}^4$ physics. Center-symmetric vacua are stabilized by a double-trace deformation. With the center symmetry maintained at small $L(S^1)\ll Λ^{-1}$, i.e. at weak coupling, no phase transitions are expected in passing to large $L(S^1)\gg Λ^{-1}$ (here $Λ$ is the dynamical Yang-Mills scale). Starting with the small $L$-limit, we find the leading-order nonperturbative corrections in the given theory. The instanton-monopole operators induce the adjoint chiral condensate $\langle ψ^{\{ij\}}χ_{[jk]}\rangle \neq 0$ at weak coupling i.e. at $L(S^1)\ll Λ^{-1}$. Then adiabatic continuity tells us that $\langle ψ^{\{ij\}}χ_{[jk]}\rangle \neq 0$ exists on $\mathbb{R}^4$, in full accord with the prediction [2]. Simultaneously with $\langle ψ^{\{ij\}}χ_{[jk]}\rangle \sim Λ^3δ^i_k$ the SU($N_c$) gauge symmetry is spontaneously broken at strong coupling down to its maximal Abelian subgroup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源