论文标题

连续服务区域设计和时机的深层实际选择策略

A deep real options policy for sequential service region design and timing

论文作者

Rath, Srushti, Chow, Joseph Y. J.

论文摘要

随着各种城市机构和移动运营商朝着创新的移动解决方案导航,需要在移动服务区域的设计和时机中及时的投资决策中具有战略性的灵活性,即将其视为“真实选择”(RO)。在此类投资中,随着多个互动RO的多次相互作用,这个问题变得越来越具有挑战性。我们为基于机器学习的基于机器学习的可扩展性RO框架针对移动性服务的多个序列服务区域设计和时机设计和时机问题,并将其框起来是Markov决策过程,具有非平稳的随机变量。来自文献的价值函数近似政策使用多选的最小二乘蒙特卡洛模拟,以获取一组相互依存的投资决策作为延期期权(CR策略)的策略价值。目的是确定一组将包括在服务区域中的区域的最佳选择和时机。但是,先前的工作需要明确列举所有可能的投资序列。为了解决这种枚举的组合复杂性,我们提出了一种新的变体“深” RO策略,使用有效的基于复发性神经网络(RNN)的ML方法(CR-RNN策略)来采样序列,以预言对枚举的需求,从而使网络设计和定时策略可用于大规模实施。纽约市多个服务区域情景(NYC)的实验表明,提议的政策大大降低了总体计算成本(可将RO评估的时间降低到> 90%的总投资序列的降低),而与基准相比,零差距为零差距。纽约市布鲁克林的MOD服务的顺序服务区域设计的案例研究表明,使用CR-RNN策略来确定最佳RO投资策略的案例研究可产生相似的性能(CR策略价值内0.5%),计算时间大大减少(约5.4倍)。

As various city agencies and mobility operators navigate toward innovative mobility solutions, there is a need for strategic flexibility in well-timed investment decisions in the design and timing of mobility service regions, i.e. cast as "real options" (RO). This problem becomes increasingly challenging with multiple interacting RO in such investments. We propose a scalable machine learning based RO framework for multi-period sequential service region design & timing problem for mobility-on-demand services, framed as a Markov decision process with non-stationary stochastic variables. A value function approximation policy from literature uses multi-option least squares Monte Carlo simulation to get a policy value for a set of interdependent investment decisions as deferral options (CR policy). The goal is to determine the optimal selection and timing of a set of zones to include in a service region. However, prior work required explicit enumeration of all possible sequences of investments. To address the combinatorial complexity of such enumeration, we propose a new variant "deep" RO policy using an efficient recurrent neural network (RNN) based ML method (CR-RNN policy) to sample sequences to forego the need for enumeration, making network design & timing policy tractable for large scale implementation. Experiments on multiple service region scenarios in New York City (NYC) shows the proposed policy substantially reduces the overall computational cost (time reduction for RO evaluation of > 90% of total investment sequences is achieved), with zero to near-zero gap compared to the benchmark. A case study of sequential service region design for expansion of MoD services in Brooklyn, NYC show that using the CR-RNN policy to determine optimal RO investment strategy yields a similar performance (0.5% within CR policy value) with significantly reduced computation time (about 5.4 times faster).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源