论文标题

滋扰功能调整和样品分裂,以达到最佳双重稳定估计

Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation

论文作者

McGrath, Sean, Mukherjee, Rajarshi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in estimators and a first-order bias-corrected estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to either undersmooth or oversmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. Unlike the existing literature, we show that plug-in and first-order biased-corrected estimators can achieve minimax rates of convergence across all Hölder smoothness classes of the nuisance functions by careful combinations of sample splitting and nuisance function tuning strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源