论文标题
一类稀疏的约翰逊(Lindenstrauss)对其极端值的变化和分析
A class of sparse Johnson--Lindenstrauss transforms and analysis of their extreme singular values
论文作者
论文摘要
Johnson- Lindenstrauss(JL)引理是现代算法设计尺寸降低的强大工具。引理指出,欧几里得空间中的任何高维点都可以扁平至较低的尺寸,同时大约保留成对的欧几里得距离。满足此引理的随机矩阵称为JL变换(JLTS)。受到现有$ s $ hashing JLT的启发,每列的$ s $ nonzero元素的启发,目前的工作引入了一组稀疏矩阵的合奏,其中包含所谓的$ s $ s $ hashing类矩阵,其预期的每列中的非零元素的预期数为〜$ s $。这些矩阵及其确切分布的知识的独立性在他们的分析中起着重要作用。使用独立的高斯随机变量的性质,这些矩阵被证明是JLT,并且使用几何功能分析的技术,可以非估计它们的最小和最大的奇异值。随着基质的尺寸生长到无穷大,这些奇异值几乎可以肯定地融合到固定数量(使用通用的bai-yin定律),并分布到高斯正交的合奏(GOE)Tracy- widom-Widom定律后正确进行了重新分组后。一般而言,了解极端值的行为很重要,因为它们通常用于定义基质算法的稳定性量度。例如,最近在无衍生优化算法框架中使用JLT来选择随机子空间,其中构造了随机模型或轮询方向以实现可伸缩性,从而估算其最小的奇异值特别有助于确定这些子空间的维度。
The Johnson--Lindenstrauss (JL) lemma is a powerful tool for dimensionality reduction in modern algorithm design. The lemma states that any set of high-dimensional points in a Euclidean space can be flattened to lower dimensions while approximately preserving pairwise Euclidean distances. Random matrices satisfying this lemma are called JL transforms (JLTs). Inspired by existing $s$-hashing JLTs with exactly $s$ nonzero elements on each column, the present work introduces an ensemble of sparse matrices encompassing so-called $s$-hashing-like matrices whose expected number of nonzero elements on each column is~$s$. The independence of the sub-Gaussian entries of these matrices and the knowledge of their exact distribution play an important role in their analyses. Using properties of independent sub-Gaussian random variables, these matrices are demonstrated to be JLTs, and their smallest and largest singular values are estimated non-asymptotically using a technique from geometric functional analysis. As the dimensions of the matrix grow to infinity, these singular values are proved to converge almost surely to fixed quantities (by using the universal Bai--Yin law), and in distribution to the Gaussian orthogonal ensemble (GOE) Tracy--Widom law after proper rescalings. Understanding the behaviors of extreme singular values is important in general because they are often used to define a measure of stability of matrix algorithms. For example, JLTs were recently used in derivative-free optimization algorithmic frameworks to select random subspaces in which are constructed random models or poll directions to achieve scalability, whence estimating their smallest singular value in particular helps determine the dimension of these subspaces.