出品机构:甲子光年智库研究团队:张一甲、宋涛发布时间:2023.02 目录 Part 01人工智能的概念与界定P02Part 02人工智能的技术演进与趋势P06Part 03ChatGPT带来的变革趋势P26Part 04AIGC风口下的投资机会P41 现在一说起人工智能的起源,公认是1956年的达特茅斯会议。殊不知还有个前戏,1955年,美国西部计算机联合大会(WesternJointComputerConference)在洛杉矶召开,会中还套了个小会:学习机讨论会(SessiononLearningMachine)。讨论会的参加者中有两个人参加了第二年的达特茅斯会议,他们是塞弗里奇(OliverSelfridge)和纽厄尔(AllenNewell)。塞弗里奇发表了一篇模式识别的文章,而纽厄尔则探讨了计算机下棋,他们分别代表两派观点。讨论会的主持人是神经网络的鼻祖之一皮茨(WalterPitts),他最后总结时说:“(一派人)企图模拟神经系统,而纽厄尔则企图模拟心智(mind)……但殊途同归。”这预示了人工智能随后几十年关于“结构与功能”两个阶级、两条路线的斗争。——尼克《人工智能简史》曾经,建制派被看作“唯一的主导力量”,“逻辑驱动”的人工智能曾主宰数十年。彼时,人们相信依据逻辑的程序是简单的,为了抵达智能,科学家们为每个不同问题编写不同程序,纷纷变成“劳动密集型”工种。但人们低估了现实世界的复杂度,问题越大,程序越复杂,逐渐错误百出、频频崩溃,使这条路进展缓慢;另一派“野路子”便是深度学习。作为跨学科产物,深度学习不追求解释和逻辑,以神经网络开启了“暴力美学”大门——计算机从数据中学习、进化,让人工智能变成“数据密集型”学科,最终从应用表现中大幅胜出,主宰当今人工智能世界。——《甲小姐对话特伦斯:进化比你聪明》1.1 人工智能源起三大学派:路线相爱相杀,理念相辅相成,一斗六十年 •又称:逻辑主义、心理学派或计算机学派。•原理:物理符号系统(即符号操作系统)假设和有限合理性原理。•起源:源于数理逻辑/逻辑推理。•学派代表:纽厄尔、西蒙和尼尔逊等。•主张:将符号作为人工智能的基本元素,人工智能的运行建立在由符号构成的数理逻辑之上。 •又称:仿生学派或生理学派。•原理:神经网络及神经网络间的连接机制与学习算法。•起源:源于仿生学,特别是人脑模型的研究。•学派代表:麦克洛奇、皮茨、霍普菲尔德、鲁梅尔哈特等。•主张:试图使机器模拟大脑,通过建立一个类似于人脑中神经元的模拟节点网络来处理信号。•又称:进化主义或控制论学派。•原理:控制论及感知—动作型控制系统。•起源:源于控制论。•学派代表作:布鲁克斯的六足行走机器人,一个基于感知-动作模式的模拟昆虫行为的控制系统。•主张:从还原论的立场出发放弃对意识的研究,专注于人和动物等有机体行为的研究。联结主义(Connectionism)符号主义(Symbolism)行为主义(Actionism)1.2 人工智能的六大学科人工智能主要包括六大学科,当下业界讨论往往聚焦机器学习这一学科 计算机视觉自然语言理解与交流认知与推理机器人学博弈与伦理机器学习暂且把模式识别、图像处理等问题归入其中暂且把语音识别、合成归入其中,包括对话包含各种物理和社会常识机械、控制、设计、运动规划、任务规划等多代理人agents的交互、对抗与合作,机器人与社会融合等议题各种统计的建模、分析工具和计算的方法感知、认知、决策人类情感、伦理与道德观念认知、决策感知、认知、决策、学习、执行感知、认知、决策、学习、执行和社会协作能力感知、认知、决策、学习、执行和社会协作能力p机器学习之所以如此火爆,是因为它是一种可以让计算机自动学习和改进的技术。p与传统的程序设计方法不同,机器学习允许计算机从数据中学习规律和模式,并在未知数据上进行预测和决策。这使得机器学习在各种领域都具有广泛应用前景,包括自然语言处理、计算机视觉、机器人技术、金融、医疗、电子商务等等。机器学习火热背后的原因:•数据量的爆炸式增长:随着数字化时代的到来,人类生产的数据量正在呈指数级增长,这些数据中蕴含着很多宝贵的信息,而机器学习可以通过对这些数据的分析和学习,发现其中的规律和模式,并将其应用于各种领域。•计算能力的提高:随着计算机硬件和软件技术的不断发展,计算能力越来越强,能够处理大规模的数据和复杂的算法,这使得机器学习变得更加高效和实用。•开源框架的出现:出现了许多优秀的机器学习框架,如TensorFlow、PyTorch等,它们不仅提供了丰富的工具和算法,而且是免费开源的,使得机器学习技术更加普及和易用。•商业应用的需求:机器学习技术在商业应用中也有广泛的应用,如推荐系统、广告投放、欺诈检测等等,这些应用在商业领域中起着至关重要的作用,推动了机器学习技术的快速发展。六大学科是七种能力的排列组合:①感知、②认知、③决策、④学习、⑤执行、⑥社会协作能力(人机交互),⑦符合人类情感、伦理与道德观念1.3 人工智能的七种能力AI七大关键能力在进化中逐步扩展累积,逐步“解放大脑” p人工智能的出现,意味着具有自主的感知、认知、决策、学习、执行、社会协作能力,符合人类情感、伦理与道德观念的智能机器逐步浮现,成为帮助人类提高生产能力和效率的新型工具。p与人类几千年来创造出来的各种“解放四肢”的工具和机器不同,其是一类逐步“解放大脑”的工具。 19561974198019871995201320202021202220232025时间AI能力 感知认知决策学习执行社会协作情感伦理图:不同时期AI侧重能力进化路线当下决策+认知+学习+感知+社会协作(交互)+执行+情感? 备注:此处的认知属于狭义的认知,更偏向于判断和推理。七大能力之间存在阶段性侧重和先后关系,但同时也是相互关联、相互作用的,不断地相互影响和改进。•感知是智能机器获取外界信息的基础。智能机器需要通过传感器、摄像头等设备收集、处理、分析环境中的信息,以便更好地理解周围的环境和物体。•认知和决策能力是智能机器进行智能处理和决策的基础。通过分析、理解和推理数据和信息,智能机器可以更好地判断和决策,以便更好地执行任务。•学习能力是智能机器不断优化和改进的基础。通过不断地从数据和经验中学习,智能机器可以自我改进和适应,更好地适应不同的环境和任务。•执行能力是智能机器实现任务的基础。智能机器通过控制执行机器人等设备完成任务。•社会协作能力是智能机器与人类和其他机器进行合作的基础。智能机器需要通过自然语言处理和其他技术,与人类进行交互和合作,以便更好地实现任务。目录 Part 01人工智能的概念与界定P02 Part 02人工智能的技术演进与趋势P06Part 03ChatGPT带来的变革趋势P26Part 04AIGC风口下的投资机会P41 2.1 AI技术的演进历程AI技术演进已经历四个阶段,如今正向全AI能力覆盖方面演进 195619741980198719952013时间AI能力 202020212022感知认知决策学习执行社会协作情感伦理 20232025图:AI能力进化路线下的技术演进路径p人工智能从出现到现在已经历四个阶段,第一个阶段的AI是以逻辑推理为主,AI能力以聚焦决策和认知为主;第二个阶段的AI则是注重以概率统计的建模、学习和计算为主,AI能力开始聚焦感知、认知和决策;第三个阶段的AI聚焦学习环节,注重大模型的建设,AI能力覆盖学习和执行;第四个阶段则聚焦执行与社会协作环节,开始注重人机交互协作,注重人类对人工智能的反馈训练,当下正处于此阶段。p短期的未来,AI会携带多种能力走向千行百业;长期的未来,仍有很多待解问题,比如:是否会产生情感?逻辑推理为主,聚焦决策、认知能力产生情感?聚焦学习环节,大模型聚焦执行与社会协作环节以概率统计的建模、学习和计算为主,聚焦感知、认知、决策 逻辑推理机器学习深度学习Transformer神经网络?GPT3ChatGPT 分解为五大学科

pdf文档 甲子光年智库 2023AIGC市场研究报告

文档预览
中文文档 54 页 50 下载 1000 浏览 0 评论 0 收藏 3.0分
温馨提示:本文档共54页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
甲子光年智库 2023AIGC市场研究报告 第 1 页 甲子光年智库 2023AIGC市场研究报告 第 2 页 甲子光年智库 2023AIGC市场研究报告 第 3 页
下载文档到电脑,方便使用
本文档由 SC2023-05-03 01:08:41上传分享
给文档打分
您好可以输入 255 个字符
网站域名是多少( 答案:github5.com )
评论列表
  • 暂时还没有评论,期待您的金玉良言